首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41405篇
  免费   4246篇
  国内免费   2436篇
电工技术   850篇
综合类   3184篇
化学工业   12081篇
金属工艺   5659篇
机械仪表   1481篇
建筑科学   2631篇
矿业工程   974篇
能源动力   546篇
轻工业   5211篇
水利工程   382篇
石油天然气   2537篇
武器工业   522篇
无线电   1655篇
一般工业技术   6038篇
冶金工业   2858篇
原子能技术   223篇
自动化技术   1255篇
  2024年   87篇
  2023年   534篇
  2022年   1152篇
  2021年   1347篇
  2020年   1248篇
  2019年   1153篇
  2018年   1211篇
  2017年   1589篇
  2016年   1634篇
  2015年   1775篇
  2014年   2163篇
  2013年   2226篇
  2012年   2860篇
  2011年   3123篇
  2010年   2387篇
  2009年   2453篇
  2008年   1951篇
  2007年   2852篇
  2006年   2627篇
  2005年   2297篇
  2004年   1907篇
  2003年   1670篇
  2002年   1437篇
  2001年   1176篇
  2000年   980篇
  1999年   887篇
  1998年   733篇
  1997年   543篇
  1996年   515篇
  1995年   402篇
  1994年   358篇
  1993年   222篇
  1992年   214篇
  1991年   127篇
  1990年   64篇
  1989年   49篇
  1988年   39篇
  1987年   22篇
  1986年   13篇
  1985年   9篇
  1984年   10篇
  1983年   7篇
  1982年   4篇
  1981年   8篇
  1980年   7篇
  1979年   4篇
  1975年   1篇
  1973年   2篇
  1959年   5篇
  1951年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
梯度分层铝合金蜂窝板是一种有效的吸能结构,本工作在梯度铝蜂窝结构的基础上根据梯度率的概念,通过改变蜂窝芯层的胞壁长度,设计了4种质量相同、梯度率不同的铝蜂窝夹芯结构。通过准静态压缩实验,并结合非线性有限元模拟准静态及冲击态下梯度铝蜂窝夹芯结构的变形情况及其力学性能,分析对比了相同质量下梯度铝蜂窝夹芯结构在准静态下的变形模式以及冲击载荷下分层均质蜂窝结构和不同梯度率的分层梯度蜂窝结构的动态响应和能量吸收特性。结果表明:在准静态压缩过程中,铝蜂窝梯度夹芯板的变形具有明显的局部化特征,蜂窝芯的变形为低密度优先变形直至密实,层级之间的密实化应变差随芯层密度的增大而逐渐减小;在高速冲击下,梯度蜂窝板并非严格按照准静态过程中逐级变形直至密实,而是在锤头冲击惯性及芯层密度的相互作用下整体发生的线弹性变形、弹性屈曲、塑性坍塌及密实化;另外,在本工作所设计的梯度率中,当梯度率为γ1=0.0276时,梯度蜂窝夹芯板的吸能性达到最好,相较于同等质量下的均质蜂窝夹芯板,能量吸收提高了10.63%。  相似文献   
12.
In this communication, the structural, micro-structural, dielectric, electrical, magnetic, and leakage-current characteristics of a double perovskite (Y2CoMnO6) ceramic material have been reported. The material was synthesized via a high-temperature mixed-oxide route. The compound crystallizes in a monoclinic structure which is confirmed from preliminary X-ray structural study. The morphological study by using scanning electron micrograph reveals the almost homogeneous distribution of grains throughout the surface of the sample. The nature of frequency-dependence of dielectric constant has been described by the Maxwell-Wagner model. The occurrence of a dielectric anomaly in the temperature dependence of dielectric permittivity study demonstrates the ferroelectric-paraelectric phase transition in the material. From the Nyquist plots, we found the existence of both grain and grain boundary effects. The frequency dependence of conductivity was studied by the Jonscher’s Power law, and the conduction phenomenon obeys the large overlapping polaron tunneling model. By using the Arrhenius equation, the activation energy has been calculated which is nearly equal to the energy required for the hoping of the electron. Both impedance and conductivity analysis demonstrate that the sample exhibits negative temperature coefficient of resistance (NTCR) properties indicating the semiconducting type of material at high temperatures. The anti-ferromagnetic character of the material is observed from the nature of magnetic hysteresis loop. The leakage current analysis suggests that the conduction process in the material follows the space charge limited conduction phenomenon. Such material will be helpful for modern electronic devices and spintronic applications.  相似文献   
13.
Mg-Zn-Nd alloy is a promising biodegradable metal material for surgical staples during the reconstruc-tion of digestive tract due to its good biocompatibility and suitable mechanical properties.However,its deformation property and corrosion resistance should be improved to make better safety and effective-ness of staples.In the present study,bi-direction drawing was adopted to maintain the initial texture characteristics,and improve mechanical property and corrosion resistance of Mg-2Zn-0.5Nd alloy.The results showed that the microstructure after bi-direction did not change too much,but the texture could maintain its initial characteristics.The ductility of the alloy with 60 % accumulative area reduction after bi-direction drawing was increased by 70 %,indicating that an outstanding deformation property of Mg-Zn-Nd alloy can be obtained by bi-direction drawing.The corrosion resistance was also improved after bi-direction drawing compared with that under single direction drawing.  相似文献   
14.
《Ceramics International》2022,48(2):1451-1483
Metal/ceramic composites are in high demand in several industries because of their superior thermo-mechanical properties. Among various composite types, the interpenetrating phase composites (IPCs) with percolating metallic and ceramic phases offer manifold benefits, such as a good combination of strength, toughness, and stiffness, very good thermal properties, excellent wear resistance, as well as the flexibility of microstructure and processing route selection, etc. The fabrication of metal/ceramic IPCs typically involves two steps - i) processing of an open porous ceramic body, and ii) infiltration of metallic melt in the pores to fabricate the IPC. Although significant progress has been made in recent years for developing both porous ceramics and melt infiltration methods, to the best of the knowledge of the authors, no review article summarizing all the aspects of processing and properties of IPCs has been published till date. This review article is aimed at filling this gap. Starting with a brief introduction about the current status and applications of IPCs, the various processing routes for fabricating open porous ceramic preforms and melt infiltration techniques have been discussed. Subsequently, the data available for various important physical, mechanical, and thermal properties for IPCs have been critically analyzed to thoroughly understand their dependence on various structural and processing parameters. To compare the properties of IPCs with other relevant materials, seven different Ashby material property maps have been used, and the domains for IPCs have been created in them. For each map, the concept of material indices has been employed to critically discuss how IPCs perform in relation to other material classes for various optimum design conditions. Finally, a detailed future outlook for further research on IPCs has been provided.  相似文献   
15.
《Ceramics International》2022,48(1):769-775
Brittle materials generally exhibit size effects, and the mechanical properties of these materials degrade significantly with an increase in size. However, the mathematical law governing the attenuation degree of mechanical properties with the increase in size is still unknown. In this study, maximum loads of differently sized ceramic test strips were subjected to three point bending tests under two working conditions of equal spans and span amplifications, respectively. Subsequently, the theoretical maximum loads of materials were calculated using the finite element method (FEM). By calculating the difference between the calculated values and the actual maximum loads, the attenuation of mechanical properties of ceramic samples were observed. The results show that the theoretical mechanical properties and the performance attenuation caused by the size effect tend to increase according to the following equation: y=ax3+bx2+cx+d. Therefore, mechanical properties and performance attenuation of any sample exhibiting a size within the experimental range can be predicted by a mathematical law, which was obtained through mechanical tests results of four samples with different sizes. The obtained mathematical law holds great significance for predicting the mechanical properties of materials under size effects.  相似文献   
16.
《Ceramics International》2022,48(15):21988-21995
Bi4O5Br2/MnxZn1-xFe2O4 nanocomposites with impressive photocatalytic and recyclability properties were synthesised using a microemulsion method. In addition to the photocatalytic effect, the crystal structure and morphology, photoelectrochemical characteristics, magnetic effect and photocatalytic mechanism of Bi4O5Br2/MnxZn1-xFe2O4 were also investigated. As the best sample, the removal rate of the Bi4O5Br2/MnxZn1-xFe2O4 photocatalyst with 7.5 wt% MnxZn1-xFe2O4 to rhodamine B (RhB) reached up to 99.4% within 60 min. The enhanced photocatalyst activity was mainly attributed to the type-II heterojunction formed between Bi4O5Br2 and MnxZn1-xFe2O4, which not only optimised the energy band structure, but also led to the building of an interior electromagnetic field within the Bi4O5Br2/MnxZn1-xFe2O4 heterojunction. Meanwhile, the constantly producing and migrating h+ and ·O2? were the main active components. In particular, the results of the saturation magnetization tests and magnetic recovery experiments revealed that the magnetic composite photocatalyst can be recovered effectively. The results of the removal rate of RhB remaining at 85.2% after five uses reflected the advantages of the stability of the Bi4O5Br2/MnxZn1-xFe2O4 photocatalyst. In brief, this paper presented an original idea to develop a novel composite magnetic photocatalyst and research the enhancement mechanism of photocatalysis.  相似文献   
17.
《Ceramics International》2022,48(3):3762-3770
Cf/Hf0.5Zr0.5C-SiC composites were prepared by introducing Hf0.5Zr0.5C matrix (11 cycles) and SiC matrix (9 cycles) into the carbon cloth preform through precursor impregnation and pyrolysis (PIP) process. The influence of the introduction time of SiC matrix on the microstructure and mechanical properties of Cf/Hf0.5Zr0.5C-SiC composites was studied, and the results show that with the increase of the PIP cycles of the SiC matrix introduced before Hf0.5Zr0.5C matrix, the composite open porosity decreased, and the flexural strength and modulus presented an obvious upward trend. CS45 sample, which has 4 cycles of PIP SiC introduced in advance, has the highest flexural strength, flexural modulus and interfacial shear strength of 402.73 ± 35.73 MPa, 56.92 ± 3.97 GPa and 100.88 ± 7.79 MPa, respectively. Hf0.5Zr0.5C matrix has a loose and porous structure, so when more SiC matrix was introduced in advance, its covering effect on the surface of fibers led to less intra-bundle pores and thusly denser composite structure, and due to the compactness of SiC matrix, better overall bonding of fiber, interface and matrix was achieved, as well as better load transfer effect, which led to obvious interfacial debonding and cracking based on the in-situ SEM observation during flexural tests. While in the sample without pre-introduced SiC, the cracking occurred mainly between the interface and porous matrix and the overall performance of the material was poor.  相似文献   
18.
Oil, accounting for 45% of almonds, is easily oxidised and can further induce the protein oxidation to reduce their quality. Structure and physicochemical properties of amandin, the main water-soluble protein in almonds, inducing oxidation by malondialdehyde (MDA) were investigated. The results showed that the content of carbonyl group increased from 5.23 to 33.25 nmol mg−1 of protein with the increase in MDA concentration (P < 0.05). However, the sulphydryl content, surface hydrophobicity, particle size and the absolute value of ζ-potential first increased and then decreased. Fourier-transformed infrared spectroscopy (FT-IR) confirmed that the structure of amandin changed from order to disorder. Fluorescence spectroscopic analysis revealed that mild oxidation (0–0.1 mmol L−1 MDA) exposed hydrophobic groups of the protein. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) suggested that protein oxidation promoted crosslinking between protein molecules. Furthermore, protein oxidation markedly declined the total amino acid content of amandin (P < 0.05). In conclusion, MDA oxidation changed the structure and amino acid content of amandin, and caused the protein aggregate and crosslink through hydrophobic interaction and electrostatic interaction.  相似文献   
19.
Mammalian gelatin is extensively utilized in the food industry because of its physicochemical properties. However, its usage is restricted and essentially prohibited for religious people. Fish gelatin is a promising alternative with no religious and social restrictions. The desirable properties of fish gelatin can be significantly improved by various methods, such as the addition of active compounds, enzymes, and natural crosslinking agents (e.g., plant phenolics and genipin), and nonthermal physical treatments (e.g., ionizing radiation and high pressure). The aim of this study was to explore whether the properties of fish gelatin (gel strength, melting or gelling temperature, odor, viscosity, sensory properties, film-forming ability, etc.) could be improved to make it comparable to mammalian gelatin. The structure and properties of gelatins obtained from mammalian and fish sources are summarized. Moreover, the modification methods used to ameliorate the properties of fish gelatin, including rheological (gelling temperature from 13–19°C to 23–25°C), physicochemical (gel strengths from ∼200 to 250 g), and thermal properties (melting points from ∼25 to 30°C), are comprehensively discussed. The relevant literature reviewed and the technological advancements in the industry can propel the development of fish gelatin as a potential alternative to mammalian gelatin, thereby expanding its competitive market share with increasing utility.  相似文献   
20.
《Ceramics International》2022,48(4):4722-4731
In recent years, phase change material emulsions (PCMEs) with enhanced energy storage capacities and good flow characteristics have drawn significant attention. However, due to the thermodynamically unstable nature and tiny particle confinement, the nanomaterial modification strategies at PCM/water interface to improve stabilities and reduce supercooling of nano-sized PCMEs (NPCMEs) are very limited and challenging. Herein, we report a facile strategy for constructing MXene-decorated NPCME with good stability, little supercooling, and high thermal conductivity by self-assembly of MXene nanosheets at PCM/water interface. The concentrations of MXene have great influences on the average droplet diameters, stabilities, and thermophysical properties of the NPCMEs. The results show that the PCMs have been well dispersed into the water in the form of quasi-spherical droplets, with average droplet diameters of 242–805 nm. The thermal conductivity of 10 wt% n-tetradecane/water NPCME containing 9 mg ml-1 MXene is 0.693 W m-1·K-1, achieving an enhancement by 15.5%, as compared to that of water. Besides, the MXene-decorated paraffin/water NPCMEs exhibit little supercooling and enhanced heat storage capacities. More importantly, this facile self-assembly strategy opens a new platform for preparing high-performance NPCMEs, which can be used as novel heat transfer fluids for thermal energy storage systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号